Hertz potentials, peeling, and the Cauchy problem

Jérémie Joudioux
Max-Planck-Institut für Gravitationsphysik
Albert-Einstein-Institut
Golm

Joint work with Lars Andersson and Thomas Bäckdahl.

First meeting of the ANR AARG
Université de Cergy-Pontoise
Jun. 14th. 2013
Introduction

- Context: Study of the nonlinear stability of Kerr black holes.
- Previous result: Minkowski nonlinear stability ('91), relies heavily on decay result for higher spin fields ('89) on flat background.
- Problem: develop new methods to understand the the decay properties of fields.
- Question: develop alternate methods to study the asymptotics of higher spin fields
- Exploit symmetries of the spacetime/higher spin fields (Maxwell fields and linearized gravity).
- the structure of potentials (Hertz, Debye, etc) strongly tight to the structure of the space-time.
Introduction : Hertz potentials

- Penrose (63’) : representations of massless spin-s fields on flat space-time : local representation by a potential of order $2s$, satisfying a wave equation.
- Penrose proved peeling from a decay assumption on χ.
- (Cohen-Kegeles 76) : on Kerr black holes :
 \[F = \overline{d\delta}G, \ G \text{ solution of a wave equation} \]

is an uncharged solution of the Maxwell equations.
- Conjecture : Any Maxwell fields can be written as :
 \[F = F_{\text{Coulomb}} + \overline{d\delta}G \]
- Conjecture : in this situation, $\overline{d\delta}G$ radiates/decays, under suitable assumptions.
Today’s talk’s framework and purpose

- Background: flat space-time.
- Cauchy problem for massless spin-s fields of arbitrary spin but especially Maxwell (spin 1) and linearized gravity (spin 2).
- Construct a potential satisfying a wave equation, whose initial data lie in a Sobolev space insuring good decay properties.
- Deduce decay/peeling properties.
- Important result: Christodoulou-Klainerman ’89 on linear fields.
Table of contents

1 Standard decay results for the scalar wave equation

2 Construction of potentials

3 Decay of linear fields using potentials
Scalar fields on flat background

• Restrict our attention to fields on Minkowski space:

\((\mathbb{R}^4, dt^2 - dx^2 - dy^2 - dz^2)\)

• Consider the Cauchy problem for the wave equation:

\[
\begin{aligned}
 \Box \phi &= 0 \\
 \phi|_{t=0} &= f \in H^k_\sigma(\mathbb{R}^3) \\
 \partial_t \phi|_{t=0} &= g \in H^{k-\frac{1}{2}}_\sigma(\mathbb{R}^3)
\end{aligned}
\]

• Purpose: How does this field decay?
Background: flat space-time.

Obtained by energy estimates (Klainerman 83-87, $\sigma = -\frac{3}{2}$) or by conformal compactification (Penrose 65, stronger assumptions on the initial data, $\sigma = -3$).

There exist more general works, for arbitrary weights (Asakura '86, d’Ancona-Georgiev-Kubo '01, Szpak '08).

Obtain decay estimates in two directions:
- Interior decay: along time directions ($t > 3r$);
- Exterior decay: along null directions ($\frac{t}{3} < r < 3t$).
Hertz potentials, peeling, and the Cauchy problem
Standard decay results for the scalar wave equation

Decay of solutions of the linear wave equation

Theorem (Klainerman)

Let $s_0 \geq 2$. Let u be a solution of the wave equation with initial date in $H^{s_0}_{\frac{3}{2}}(\mathbb{R}^3) \times H^{s_0 - \frac{1}{2}}_{\frac{5}{2}}(\mathbb{R}^3)$. Then

1. for $t > 3r$

 $$|\phi(t, x)| \leq C \frac{||\phi(0)||_{-\frac{3}{2}, s_0}}{< t >^{\frac{3}{2}}},$$

2. for $\frac{r}{3} < t < 3r$

 $$|\phi(t, x)| \leq C \frac{||\phi(0)||_{-\frac{3}{2}, s_0}}{< u >^{\frac{1}{2}} < v >^{1}}.$$
Theorem (Klainerman)

Let $s_0 \geq 2$, $(j, k, l) \in \mathbb{N}^3$. Let u be a solution of the wave equation with data in $H_{-3/2}^{s_0+j+k+l}$. Then

1. For $t > 3r$

$$|\nabla^j \phi(t, x)| \leq C \frac{||\phi(0)||_{-3/2, s_0+j}}{< t >^{3/2+j}},$$

2. For $\frac{r}{3} < t < 3r$:

$$|\partial^j_u \partial^k_v \nabla^l_{S_2^r} \phi(t, x)| \leq C \frac{||\phi(0)||_{-3/2, s_0+j+k+l}}{< u >^{1/2+j} < v >^{1+k+l}},$$

$u = t - r$ and $v = t + r$.
Decay result for arbitrary weights

- For arbitrary $\sigma \notin \mathbb{Z}$?
- $\phi|_{t=0} = f \in H^k_{\sigma}$ and $\partial_t \phi|_{t=0} = g \in H^{k-1}_{\sigma-1}$, $k \geq 3$:
 \[f(x) \leq <r>^\sigma \|f\|_{2,\sigma} \quad \text{and} \quad g(x) \leq <r>^{\sigma-1} \|g\|_{2,\sigma-1} \]
- Integral representation:
 \[
 \phi(t, x) = \frac{1}{4\pi} \left(\int_{S^2} t (g(x + t\omega) + \partial_\omega f(x + t\omega)) + f(x + t\omega)d\mu_{S^2} \right)
 \]
- Asymptotic behavior is given by:
 \[
 J_\sigma = \int_{S^2} <|x + t\omega|^\sigma > d\mu_{S^2}.
 \]
Hertz potentials, peeling, and the Cauchy problem
Standard decay results for the scalar wave equation

Decay result for arbitrary weights

\[J_{\sigma} = \begin{cases}
8\pi \left(\frac{<u>^{2+\sigma} - <v>^{2+\sigma}}{(2 + \sigma)(<u>^2 - <v>^2)} \log \left(\frac{<u>}{<v>} \right) \right) & \text{if } \sigma \neq -2 \text{ and } <u> \neq <v>, \\
8\pi \left(\frac{<u>^2 - <v>^2}{<u>^2 - <v>^2} \right) & \text{if } \sigma = -2 \text{ and } <u> \neq <v>, \\
4\pi <v>^{\sigma} & \text{if } <u> = <v>.
\end{cases} \]

For the full solution, combine \(J_{\sigma} \) and \(J_{\sigma-1} \), hence the discussion arises on \(\sigma = -1 \).

For higher order derivatives, one use commutations with \(\square \).
Hertz potentials, peeling, and the Cauchy problem
Standard decay results for the scalar wave equation

Decay for arbitrary weights

Proposition

If \((f, g)\) in \(H^m_\sigma \times H^{m-1}_{\sigma-1}\), \(m \geq j + k + l + 3\), one denotes:

\[
l_\sigma = \left\| (f, g) \right\|_{H^j_\sigma + k + l + 3 \times H^{j+k+l+2}_{\sigma-1}}
\]

then:

\[
\left\| \partial_u^k \partial_v^l \nabla^m S_2 \phi \right\| \leq C_{l_\sigma} \begin{cases}
\langle u \rangle^{1+\sigma-k} \langle v \rangle^{-1-l-m} & \text{if } \sigma < k-1 \\
\log \langle v \rangle - \log \langle u \rangle & \text{if } \sigma = k-1 \\
\langle v \rangle^{l+m} (\langle v \rangle - \langle u \rangle) & \text{if } \sigma > k-1,
\end{cases}
\]

Rem : The estimates are sharp.
Problem

- Give a proper analytic framework to Penrose’s representation of massless fields of spin $2s$:
 \[
 \phi_{A...F} = \nabla_{AA'} \cdots \nabla_{FF'} \xi^{A'...F'}, \text{where } \square \xi = 0.
 \]

- Proper analytic representation: Cauchy problem for the field to a Cauchy problem for the potential + control of the norm of the initial data of the potential.

- Cases of interest: Maxwell and linearized gravity on flat background.

- Methods: elementary elliptic theory.
Hertz potentials, peeling, and the Cauchy problem

Construction of potentials

Maxwell equations

- Geometric background: Minkowski background \((\mathbb{R}^4, \eta)\).
- Consider the Faraday (skew-symmetric) tensor (2-form) : \(F\).
- Link with electric and magnetic fields (1-forms on \(\mathbb{R}^3\)) :
 \[T^a = (1, 0, 0, 0) : \]
 \[E = F(T, \bullet) \text{ and } B = (\star F)(T, \bullet) \]
 where \(\star F\) is the Hodge dual.
- Maxwell equations :
 \[dF = 0 \text{ and } \delta F = 0 \]
 \[\nabla_{[a}F_{bc]} = 0 \text{ and } \nabla^a F_{ab} = 0 \]
Cauchy problem for the Maxwell equations

- Hyperbolic system of order 1 with 6 real unknowns with geometric constraints on the initial data.

\[
\begin{align*}
(\bar{d} + \bar{\delta})F &= 0 \\
F|_{t=0} &\in H^{k}_o(\mathbb{R}^3, \Lambda^2)
\end{align*}
\]

- Geometric constraints on the initial data:

\[
D^a E_a = D^a B_a = 0
\]

- Purpose: construct initial data for \(G \) such that \(F \) of the form:

\[
F = \bar{d}\delta G
\]
Construction of a potential for the Maxwell field

- Assume $F = \overline{d\delta} G$.
- Restrict to $t = 0$:
 \[
 E = -\delta dH - \delta \star \partial_t K \\
 B = -\delta dK + \delta \star \partial_t H
 \]
- Solve for a given set of initial data with:
 \[
 H = K = 0.
 \]
- Take $E, B \in H^k_\sigma$ in the image of Δ:
 \[
 E = (d\delta + \delta d) \tilde{H} \\
 B = (d\delta + \delta d) \tilde{K}
 \]
 with $\tilde{H}, \tilde{K} \in H^{k+2}_{\sigma+2}$.
Construction of a potential

• Use the geometric constraints:

\[\delta E = 0 \quad \Rightarrow \quad E = \delta \left(d\tilde{H}(\text{sth}) \right) \]
\[\delta B = 0 \quad \Rightarrow \quad B = \delta \left(d\tilde{K}(\text{sth}) \right) \]

• Take as initial data for the potential: \((0, -\star d\tilde{H})\) and \((0, \star d\tilde{K})\).

• Conditions to admit a potential:

\[E, B \in H^k_\sigma(\Lambda^1) \perp \text{Ker}(\Delta) \cap L^2_{-3-\sigma}(\Lambda^1) \]

• Claim: \(E, B\) satisfying the constraints are automatically orthogonal to the elements of \(L^2_{-3-\sigma}(\Lambda^1)\) satisfying:

\[d\omega = 0. \]
Construction of a potential

- for $\delta = -\frac{7}{2}$, the potential has data lying in $H_{-\frac{3}{2}}$ and
 \[\text{Ker}(\Delta) \cap L^2_{\frac{1}{2}}(\Lambda^2) = \{ \alpha_i dx^i | \alpha_i \in \mathbb{R} \}; \]

 \[\text{CK} \quad \text{for} \ \delta = -\frac{5}{2}, \text{the potential has data lying in} \ H_{-\frac{1}{2}} \text{ and} \]
 \[\text{Ker}(\Delta) \cap L^2_{\frac{1}{2}}(\Lambda^2) = \{ 0 \}; \]

- In both cases, the orthogonality condition is satisfied.
- Constraints + data in H^k_{σ} ($\sigma = -\frac{5}{2}, -\frac{7}{2}$) \Rightarrow automatically orthogonal to the cokernel.
Existence of a potential for Maxwell fields

Proposition

Let σ in $\{-\frac{5}{2}, -\frac{7}{2}\}$ and $s_0 \geq 2$. Let E_0, B_0 be two solutions of the constraints in H^s_{σ}. Then there exist two 2-forms (G_0, G_1) in $H^{s_0+2}_{\sigma+2} \times H^{s_0+1}_{\sigma+1}$ such that:

$$\|G_0\|_{s_0+2,\sigma+2}^2 + \|G_1\|_{s_0+1,\sigma+1}^2 \leq C\|F_0\|_{s_0,\sigma}^2$$

and:

$$F = \overline{d\delta} G$$

where G is the solution of the wave equation $(\overline{d\delta} + \delta d)G = 0$ with initial data (G_0, G_1).
Linearized gravity – Spinor version

- \(W_{abcd} \), a 4-tensor satisfying the symmetries of the Weyl spinor.
- Consider the Cauchy problem:
 \[
 \begin{cases}
 \nabla^a W_{abcd} = 0 \\
 W_{abcd} = \psi_{abcd} \in H^k + \text{constraints}
 \end{cases}
 \]
- Introduce \(E, B \):
 \[
 \begin{aligned}
 E_{cd} &= T^a T^b W_{abcd} \\
 D^a E_{ab} &= 0 \\
 B_{cd} &= T^a T^b (\star W_{abcd}) \\
 D^a B_{ab} &= 0
 \end{aligned}
 \]
- Hyperbolic system of order 1 of 10 unknowns.
- Unfortunately, no simple tensor notations:
 \[
 W = \nabla \nabla \underbrace{\nabla \nabla \xi}_{\text{Lanczos potential}}.
 \]
Linearized gravity – Spinor version

- ϕ_{ABCD}, a totally symmetric spinor.
- Consider the Cauchy problem:

$$\begin{cases}
\nabla^{AA'} \phi_{ABCD} = 0 \\
\phi_{ABCD} = \psi_{ABCD} \in H^k + \text{constraints } D^{AB} \psi_{ABCD} = 0
\end{cases}$$

- Hyperbolic system of order 1 of 5 complex unknowns.
- In spinors, the potential writes:

$$\phi_{ABCD} = \nabla_{AA'} \nabla_{BB'} \nabla_{CC'} \nabla_{DD'} \xi^{A'B'C'D'}.$$

Bergman potential

Lanczos potential

- Unfortunately, no simple tensor notations: $W = F_4(\xi)$
Sketch of the proof

- Principle of the proof is the same except that one has to work with Δ^2.
- Only important change: orthogonality condition on E_{ab} and B_{ab}:

Proposition

E_{ab}, satisfying the constraints, is automatically orthogonal to the elements ω_{ab} of Ker(Δ^2) \cap $L^2_{-3-\delta}(S^2)$, which satisfy:

$$\mathcal{R}(\omega_{ab}) = 0$$

where \mathcal{R} is the linearized Cotton-York tensor (3rd order differential operator).
Conformal rigidity: the deformation of a metric \(g_0, \{ g_t \}_t \), is conformally rigid iff there exist a family of diffeomorphisms \(\phi_t \) and functions \(u_t \) such that:

\[
\phi_t^* g_0 = e^{u_t} g_t
\]

with \(\phi_0 = \text{Id} \) and \(u_0 = 0 \).

The conformal Killing equation:

\[
L_X g_0 - \frac{1}{3} \text{Tr}(L_X g_0) g_0 = h \quad \text{or} \quad 2D_{(AB}X_{CD)} = h_{ABCD}
\]

can only be integrated provided that:

\[
0 = \epsilon_{abcd} \mathcal{R}(h)_{dc} = 2D_{[a}\sigma_{b]}c \quad \text{where}
\sigma_{ab} = D_{(a}D^c h_{b)c} - \frac{1}{2} \Delta h_{ab} - \frac{1}{4} g_{ab} D^c D^d h_{cd}.
\]

\(\mathcal{R} \) is the linearized Cotton-York tensor.
De Rham and Gasqui-Goldschmidt's complexes

- Previous works: Gasqui-Golschmidt '84; Beig '97
- Solving

\[df = \star \omega \left(\omega \in \Lambda^1 \right) \text{ or } L_X g_0 - \frac{1}{3} \text{Tr}(L_X g_0)g_0 = h \]

requires that the lhs satisfy constraints.

- Constraints are solved by the differential complexes:

\[
\begin{align*}
C^\infty(M, \mathbb{R}) & \xrightarrow{d} \Lambda^1 \xrightarrow{\star d} \Lambda^1 \xrightarrow{\delta} C^\infty(M, \mathbb{R}) \\
\Lambda^1(M) & \xrightarrow{L} S^2_0(M, g) \xrightarrow{\mathcal{R}} S^2_0(M, g) \xrightarrow{\delta^2} \Lambda^1(M)
\end{align*}
\]

L : conformal Killing operator, \(\delta_2 \) : divergence on 2 tensors.
Proposition

Let σ in $\{-\frac{11}{2}, -\frac{9}{2}, -\frac{7}{2}\}$ and $s_0 \geq 2$.
Let ψ_{ABCD} be a solution to the constraints in $H_{s_0}^{\sigma}$.
Then there exists (ξ_0, ξ_1) in $H_{\sigma+4}^{s_0+4} \times H_{\sigma+3}^{s_0+3}$ such that :

$$\|\xi_0\|_{s_0+2,\sigma+4}^2 + \|\xi_1\|_{s_0+1,\sigma+3}^2 \leq C\|\psi\|_{s_0,\sigma}^2$$

and

$$\phi_{ABCD} = \nabla AA' \nabla BB' \nabla CC' \nabla DD' \xi^{A'B'C'D'}$$

where ξ is the solution of the wave equation $\Box \xi = 0$ with initial data (ξ_0, ξ_1).
Purpose: Study the asymptotic behavior of spin s fields satisfying the Dirac equation on flat background by methods which could be extended to Kerr background.

Here: derive the same kind of decay result using representation of fields using potentials by reducing the tensor equation to a scalar wave equation.

Methods introduced by Penrose in ’61/’65 (spin lowering and spin raising process).
Peeling for the Maxwell equations

<table>
<thead>
<tr>
<th>Weight – ID</th>
<th>$-\frac{7}{2}$</th>
<th>$-\frac{5}{2}$ (ABJ)</th>
<th>$-\frac{5}{2}$ (CK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight – ID potential</td>
<td>$-\frac{3}{2}$</td>
<td>$-\frac{1}{2}$ (ABJ)</td>
<td>X</td>
</tr>
</tbody>
</table>

Interior decay $t > 3r$

<table>
<thead>
<tr>
<th></th>
<th>$t^{-\frac{7}{2}}$</th>
<th>$t^{-\frac{5}{2}}$</th>
</tr>
</thead>
</table>

Exterior decay $\frac{t}{3} < r < 3t$

<table>
<thead>
<tr>
<th></th>
<th>$u^{-\frac{5}{2}} v^{-1}$</th>
<th>$u^{-\frac{3}{2}} v^{-1}$</th>
<th>$u^{-\frac{3}{2}} v^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(\partial_v, e_1), \phi_2$</td>
<td>$u^{-\frac{1}{2}} v^{-2}$</td>
<td>$u^{-\frac{1}{2}} v^{-2}$</td>
<td>$u^{-\frac{1}{2}} v^{-2}$</td>
</tr>
<tr>
<td>$F(\partial_v, \partial_u), F(e_1, e_2), \phi_1$</td>
<td>$u^{-\frac{1}{2}} v^{-3}$</td>
<td>$r^{-\frac{5}{2}}$</td>
<td>$r^{-\frac{5}{2}}$</td>
</tr>
<tr>
<td>$F(\partial_u, e_1), \phi_0$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One can also derive these components to complete the peeling result. The result is still the same as the one as CK.
In the interior region, for all weight σ:

$$|\phi_{ABCD}| \lesssim \frac{1}{<t>^\sigma}.$$

For the weight $\sigma = -\frac{11}{2}$, the exterior decay result is:

$$|\phi_i| \lesssim \frac{1}{v^{1+4-i}u^{\frac{1}{2}+i}}.$$

For the weight $\sigma = -\frac{7}{2}$:

- for $i = 2, 3, 4$,

 $$|\phi_i| \lesssim \frac{1}{<v>^{1+4-i}<u>^{\frac{5}{2}+i}}.$$

- for $i = 0, 1$,

 $$|\phi_i| \lesssim <r>^{-\frac{7}{2}}.$$

Exactly the same result as CK.
Conclusion

- We recover fully Christodoulou-Klainerman results; but the mechanism is simpler and works for arbitrary spin.
- For half integer spin: should work similarly, with the extra remark that the curl is elliptic in this situation.
- Purpose: extend this to Kerr space time.
- In this context, Maxwell fields of the form $d\delta G$ are not charged.
- Hard: Need a proper elliptic theory, results on the wave equation are partially complete.
- Nonetheless: there exists another process: spin lowering, which can generate both symmetries amongst solutions and potentials, using the existence of the Killing spinor.