MONOTONICITY OF A RELATIVE RÉNYI ENTROPY

RUPERT L. FRANK AND ELLIOTT H. LIEB

Abstract. We show that a recent definition of relative Rényi entropy is monotone under completely positive, trace preserving maps. This proves a recent conjecture of Müller–Lennert et al.

Recently, Müller–Lennert et al. [11] and Wilde et al. [14] modified the traditional notion of relative Rényi entropy and showed that their new definition has several desirable properties of a relative entropy. One of the fundamental properties of a relative entropy, namely monotonicity under completely positive, trace preserving maps (quantum operations) was shown only in a limited range of parameters and conjectured for a larger range. Our goal here is to prove this conjecture.

More precisely, the definition of the quantum Rényi divergence [11] or sandwiched Rényi entropy [14] is

\[D_\alpha (\rho \| \sigma) = \begin{cases}
(\alpha - 1)^{-1} \log \left((\operatorname{Tr} \rho)^{-1} \operatorname{Tr} \left(\sigma^{(1-\alpha)/(2\alpha)} \rho \sigma^{(1-\alpha)/(2\alpha)} \right)^\alpha \right) & \text{if } \alpha \in (0, 1) \cup (1, \infty), \\
(\operatorname{Tr} \rho)^{-1} \operatorname{Tr} \rho (\log \rho - \log \sigma) & \text{if } \alpha = 1, \\
\log \| \sigma^{-1/2} \rho \sigma^{-1/2} \|_\infty & \text{if } \alpha = \infty
\end{cases} \]

for non-negative operators \(\rho, \sigma \). Here, for \(\alpha \geq 1 \), we define \(\operatorname{Tr} \left(\sigma^{(1-\alpha)/\alpha} \rho \sigma^{(1-\alpha)/\alpha} \right)^\alpha = \infty \) if the kernel of \(\sigma \) is not contained in the kernel of \(\rho \). After a first version of our paper appeared (arXiv:1306.5358) we were made aware of the fact that \(D_\alpha (\rho \| \sigma) \) is a special case of a two-parameter family of relative entropies introduced earlier in [7].

Note that \(D_\alpha (\rho \| \sigma) \) is the relative von Neumann entropy for \(\alpha = 1 \), the relative max-entropy for \(\alpha = \infty \) and closely related to the fidelity \(\operatorname{Tr} \left(\sigma^{1/2} \rho \sigma^{1/2} \right)^{1/2} \) for \(\alpha = 1/2 \). In [11] it is shown that \(D_\alpha (\rho \| \sigma) \) depends continuously on \(\alpha \), in particular, at \(\alpha = 1 \) and \(\alpha = \infty \).

The definition of \(D_\alpha (\rho \| \sigma) \) should be compared with the traditional relative Rényi entropy,

\[D'_\alpha (\rho \| \sigma) = (\alpha - 1)^{-1} \log \left((\operatorname{Tr} \rho)^{-1} \operatorname{Tr} \sigma^{1-\alpha} \rho^\alpha \right) \quad \text{if } \alpha \in (0, 1) \cup (1, \infty). \]

Note that by the Lieb–Thirring trace inequality [9]

\[D_\alpha (\rho \| \sigma) \leq D'_\alpha (\rho \| \sigma) \quad \text{for } \alpha > 1. \]

© 2013 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

U.S. National Science Foundation grants PHY-1068285 (R.F.) and PHY-0965859 (E.L.) and the Simons Foundation grant 230207 (E.L.) are acknowledged.

July 5, 2013.
Our main results in this paper are the following two theorems.

Theorem 1 (Monotonicity). Let $1/2 \leq \alpha \leq \infty$ and let $\rho, \sigma \geq 0$. Then for any completely positive, trace preserving map \mathcal{E},

$$D_\alpha(\rho\|\sigma) \geq D_\alpha(\mathcal{E}(\rho)\|\mathcal{E}(\sigma)).$$

Theorem 2 (Joint convexity). Let $1/2 \leq \alpha \leq 1$. Then $D_\alpha(\rho\|\sigma)$ is jointly convex on pairs (ρ, σ) of non-negative operators with $\text{Tr}\, \rho = t$ for any fixed $t > 0$.

For the relative von Neumann entropy ($\alpha = 1$) both theorems are due to Lindblad [10], whose proof is based on Lieb’s concavity theorem [8]. Theorem 1 for $\alpha \in (1, 2]$ is due to [11] and [14]. In a preprint of [11] its validity was conjectured for all values $\alpha \geq 1/2$. Shortly after the first version of our paper appeared (arXiv:1306.5358), Beigi independently posted (arXiv:1306.5920) an alternative proof of Theorem 1 in the range $\alpha \in (1, \infty)$.

Just as in Lindblad’s monotonicity proof for $\alpha = 1$, we will deduce Theorem 1 for $\alpha > 1$ from Lieb’s concavity theorem [8]. The proof for $1/2 \leq \alpha < 1$ uses a close relative of this theorem, namely, Ando’s convexity theorem [1]. These theorems enter in the proof of Proposition 3 below.

Let us turn to the proofs of the theorems. Both of them are based on the following proposition.

Proposition 3. The following map on pairs of non-negative operators

$$(\rho, \sigma) \mapsto \text{Tr} \left(\sigma^{(1-\alpha)/(2\alpha)} \rho \sigma^{(1-\alpha)/(2\alpha)} \right)$$

is jointly concave for $1/2 \leq \alpha < 1$ and jointly convex for $\alpha > 1$.

We note that this proposition implies that $\exp((\alpha - 1)D_\alpha(\rho\|\sigma))$ is jointly concave for $1/2 \leq \alpha < 1$ and jointly convex for $\alpha > 1$ on pairs (ρ, σ) of non-negative operators with $\text{Tr}\, \rho = t$ for any fixed $t > 0$. Since $x \mapsto x^{y/(\alpha - 1)}$ is convex for $1 < \alpha \leq 2$, we deduce that $\exp(D_\alpha(\rho\|\sigma))$ is jointly convex for $1 < \alpha \leq 2$ on pairs (ρ, σ) of non-negative operators with $\text{Tr}\, \rho = t$ for any fixed $t > 0$. This fact is also proved in [11] and [14].

The argument to derive Theorem 1 from Proposition 3 is well known, but we include it for the sake of completeness. The fact that joint convexity implies monotonicity appears in [10], but here we also use ideas from [13].

Proof of Theorem 1 given Proposition 3. We prove the assertion for $\alpha \in [1/2, 1) \cup (1, \infty)$. The remaining two cases follow by continuity in α. By a limiting argument we may assume that the underlying Hilbert space is \mathbb{C}^N for some finite N. If \mathcal{E} is a completely positive, trace preserving map then by the Stinespring representation theorem [12] there is an integer $N' \leq N^2$, a density matrix τ on $\mathbb{C}^{N'}$ (which can be chosen to be pure) and a unitary U on $\mathbb{C}^N \otimes \mathbb{C}^{N'}$ such that

$$\mathcal{E}(\gamma) = \text{Tr}_2 U (\gamma \otimes \tau) U^*.$$
Thus, if du denotes normalized Haar measure on all unitaries on $\mathbb{C}^{N'}$, then
\[E(\gamma) \otimes (N')^{-1} 1_{\mathbb{C}^{N'}} = \int (1 \otimes u) U(\gamma \otimes \tau) U^*(1 \otimes u^*) \, du. \tag{1} \]

By the tensor property of $D_\alpha(\cdot\|\cdot)$,
\[D_\alpha(E(\rho)\|E(\sigma)) = D_\alpha(E(\rho) \otimes (N')^{-1} 1_{\mathbb{C}^{N'}} \| E(\sigma) \otimes (N')^{-1} 1_{\mathbb{C}^{N'}}). \tag{2} \]

By (1) and Proposition 3 the double, normalized u integral in (2) is bounded from below (if $1/2 \leq \alpha < 1$) or above (if $\alpha > 1$) by a single integral:
\[
\int D_\alpha((1 \otimes u) U(\rho \otimes \tau) U^*(1 \otimes u^*) \| (1 \otimes u) U(\sigma \otimes \tau) U^*(1 \otimes u^*)) \, du \\
= \int D_\alpha(\rho \otimes \tau \| \sigma \otimes \tau) \, du \\
= D_\alpha(\rho \| \sigma).
\]

Here, we used the unitary invariance of $D_\alpha(\cdot\|\cdot)$, the normalization of the Haar measure and the tensor property of $D_\alpha(\cdot\|\cdot)$.

Dividing the inequality we have obtained by $\text{Tr} E(\rho) = \text{Tr} \rho$, taking logarithms and multiplying by $\alpha - 1$ we obtain the monotonicity stated in the theorem. \hfill \Box

Proof of Theorem 2 given Proposition 3. This follows immediately from Proposition 3 together with the fact that $x \mapsto \log x$ is concave. \hfill \Box

Thus, we have reduced the proofs of Theorems 1 and 2 to the proof of Proposition 3. The latter, in turn, is based on two ingredients. The first one is a representation formula for $\text{Tr} \left((1 - \alpha)/(2\alpha) \rho \sigma (1 - \alpha)/(2\alpha) \right)^{\alpha}$.

Lemma 4. Let $\rho, \sigma \geq 0$ be operators. Then, if $\alpha > 1$,
\[
\text{Tr} \left((1 - \alpha)/(2\alpha) \rho \sigma (1 - \alpha)/(2\alpha) \right)^{\alpha} = \sup_{H \geq 0} \left(\alpha \text{Tr} H \rho - (\alpha - 1) \text{Tr} \left(H^{1/2} \sigma (\alpha - 1)/\alpha H^{1/2} \right)^{(\alpha - 1)/\alpha} \right)
\]
and, if $0 < \alpha < 1$,
\[
\text{Tr} \left((1 - \alpha)/(2\alpha) \rho \sigma (1 - \alpha)/(2\alpha) \right)^{\alpha} = \inf_{H \geq 0} \left(\alpha \text{Tr} H \rho + (1 - \alpha) \text{Tr} \left(H^{1/2} \sigma (\alpha - 1)/\alpha H^{1/2} \right)^{(\alpha - 1)/\alpha} \right).
\]

The second ingredient in the proof of Proposition 3 is a concavity result for $\text{Tr} (B^* A^p B)^{1/p}$.

Lemma 5. For a fixed operator B, the map on non-negative operators
\[A \mapsto \text{Tr} (B^* A^p B)^{1/p} \]
is concave for $-1 \leq p \leq 1$, $p \neq 0$.

The case $0 < p \leq 1$ in this lemma is due to Epstein [6], with an alternative proof due to Carlen–Lieb [5] based on the Lieb concavity theorem [8]. Legendre transforms, similar to Lemma 4, are also used in [5].
The remaining case $-1 \leq p < 0$ can be proved similarly, using Ando’s convexity theorem [1], as in [5]. (For an introduction to both theorems we refer to [4].) While this case could easily have been included in [5], it was not, and for the benefit of the reader we explain the argument below. Alternatively, one could probably follow Bekjan’s adaption [2] of Epstein’s proof to establish the $-1 \leq p < 0$ case.

Proof of Proposition 3 given Lemmas 4 and 5. Lemma 5 implies that

$$\sigma \mapsto (1 - \alpha) \text{Tr} \left(H^{1/2} \sigma^{(\alpha-1)/\alpha} H^{1/2} \right)^{\alpha/(\alpha-1)}$$

is concave for $1/2 \leq \alpha < 1$ and convex for $\alpha > 1$. The claim of the proposition now follows from the representation formula in Lemma 4. □

It remains to prove the lemmas.

Proof of Lemma 4. Let $\alpha > 1$. Since $H^{1/2} \sigma^{(\alpha-1)/\alpha} H^{1/2}$ and $\sigma^{(\alpha-1)/(2\alpha)} H \sigma^{(\alpha-1)/(2\alpha)}$ have the same non-zero eigenvalues, the right side of the lemma is the same as

$$\sup_{H \geq 0} \left(\alpha \text{Tr} H \rho - (\alpha - 1) \text{Tr} \left(\sigma^{(\alpha-1)/(2\alpha)} H \sigma^{(\alpha-1)/(2\alpha)} \right)^{\alpha/(\alpha-1)} \right).$$

Let us show that this supremum is given by $\text{Tr} \left(\sigma^{(1-\alpha)/\alpha} \rho \sigma^{(1-\alpha)/\alpha} \right)^{\alpha}$. To prove this, we observe that the supremum is attained and that the Euler–Lagrange equation for the optimal \hat{H} reads

$$\alpha \rho - \alpha \sigma^{(\alpha-1)/(2\alpha)} \left(\sigma^{(\alpha-1)/(2\alpha)} \hat{H} \sigma^{(\alpha-1)/(2\alpha)} \right)^{1/(\alpha-1)} \sigma^{(\alpha-1)/(2\alpha)} = 0,$$

that is,

$$\hat{H} = \sigma^{(1-\alpha)/(2\alpha)} \left(\sigma^{(1-\alpha)/(2\alpha)} \rho \sigma^{(1-\alpha)/(2\alpha)} \right)^{\alpha-1} \sigma^{(1-\alpha)/(2\alpha)}.$$

By inserting this into the expression we wish to maximize, we obtain $\text{Tr} \left(\sigma^{(1-\alpha)/\alpha} \rho \sigma^{(1-\alpha)/\alpha} \right)^{\alpha}$, as claimed. The proof for $0 < \alpha < 1$ is similar. □

Proof of Lemma 5. As we have already mentioned, the result for $0 < p \leq 1$ is known [6, 5]. Therefore, we only give the proof for $-1 \leq p < 0$ and for this we adapt the argument of [5]. We note that

$$p \text{Tr} \left(B^* A^p B \right)^{1/p} = \inf_{X \geq 0} \left(\text{Tr} A^{p/2} B X^{1-p} B^* A^{p/2} - (1 - p) \text{Tr} X \right).$$

(This is shown similarly as in the proof of Lemma 4.) If we can prove that

$$(A, X) \mapsto \text{Tr} A^{p/2} B X^{1-p} B^* A^{p/2}$$

is jointly convex on pairs of non-negative operators, then $p \text{Tr} \left(B^* A^p B \right)^{1/p}$ as an infimum over jointly convex functions is convex, (see [5, Lemma 2.3]) which implies the lemma.

To prove that (3) is jointly convex, we write, as in [8],

$$\text{Tr} A^{p/2} B X^{1-p} B^* A^{p/2} = \text{Tr} Z^p K^* Z^{1-p} K,$$
where
\[K = \begin{pmatrix} 0 & 0 \\ B^* & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} A & 0 \\ 0 & X \end{pmatrix}. \]
We can consider \(K \), which is an operator in \(\mathcal{H} \oplus \mathcal{H} \), as a vector in \((\mathcal{H} \oplus \mathcal{H}) \otimes (\mathcal{H} \oplus \mathcal{H})\) and write \(\tilde{K} \). Thus,
\[
\text{Tr} \, Z^p K^* Z^{1-p} K = \langle \tilde{K}, Z^p \otimes Z^{1-p} \tilde{K} \rangle.
\]
By Ando’s convexity theorem [1], the right side is a convex function of \(Z \). This is equivalent to (3) being jointly convex, as we set out to prove. \(\square \)

Remark 6. More generally, for a fixed operator \(B \), \(A \mapsto \text{Tr} \, (B^* A^p B)^{q/p} \) is concave on non-negative operators for \(0 < |p| \leq q \leq 1 \). The case \(p > 0 \) is due to Carlen–Lieb [5] and the case \(p < 0 \) follows from similar arguments. More precisely, we can write
\[
r \, \text{Tr} \, (B^* A^p B)^{q/p} = \inf_{X \geq 0} \left(\text{Tr} \, A^{p/2} B X^{1-r} B^* A^{p/2} - (1 - r) \, \text{Tr} \, X \right)
\]
with the notation \(r = p/q < 0 \). Since
\[
\text{Tr} \, A^{p/2} B X^{1-r} B^* A^{p/2} = \text{Tr} \, Z^p K^* Z^{1-r} K
\]
with \(Z \) and \(K \) as in the previous proof, the more general assertion again follows from Ando’s convexity theorem [1].

Acknowledgements. We thank E. Carlen, V. Jaksic, C.-A. Pillet and A. Vershynina for valuable comments on a first draft of this paper.

References

Rupert L. Frank, Mathematics 253-37, Caltech, Pasadena, CA 91125, USA

E-mail address: rlfrank@caltech.edu

Elliott H. Lieb, Departments of Mathematics and Physics, Princeton University, Washington Road, Princeton, NJ 08544, USA

E-mail address: lieb@princeton.edu