Département de chimie

PLAN DE COURS

LICENCE DE

PHYSIQUE - CHIMIE

2015-2016
Table des matières

Licence de Physique - Chimie .. 4

- Présentation .. 4
- Organisation générale ... 4
- Aide à la réussite .. 4

L1 ... 5

- Organisation .. 5
- Prérequis .. 5
- Contact/Secrétariat ... 5
- Responsable .. 5
- Enseignements ... 5

L2 ... 13

- Objectifs ... 13
- Contact/Secrétariat ... 13
- Responsable .. 13
- Admission .. 13
- Enseignements ... 13

L3 ... 22

- Objectifs ... 22
- Contact/Secrétariat ... 22
- Responsable .. 22
- Admission .. 22
- Enseignements ... 22
Licence de Physique - Chimie

Présentation
La licence de Chimie s’effectue en 3 ans et s’adresse aux bacheliers scientifiques. Elle permet d’acquérir une formation théorique, pratique et appliquée en chimie.

Une progression pédagogique de la 1ère année, plus généraliste, à la 3e année, plus spécialisée, est respectée. L’expression orale est développée à partir de la pratique d’exposés ou d’intervention en petits groupes.

Cette licence est particulièrement adaptée aux étudiants visant la préparation d’un master recherche ou professionnel en chimie fondamentale ou appliquée, l’intégration d’une école d’ingénieur sur titre et/ou la préparation aux concours d’entrée aux carrières de professeurs.

Organisation générale
La 1ère année appelée L1 est constituée par les semestres S1 et S2. Elle est commune aux formations de chimie, de physique et chimie et de sciences de la Terre. Elle correspond au portail PCSTI (physique, chimie, sciences de la Terre et ingénierie) qui est le seul adapté au sein de l’UCP pour accéder à une licence de chimie.

La 2e année (L2), composée des semestres S3 et S4, permet à l’étudiant de choisir une spécialisation en chimie ou en physique et chimie.

En 3e année (L3), composée des semestres S5 et S6, il peut choisir une spécialisation en chimie.

Lors des semestres S2, S3, S4, des enseignements libres sont proposés dans différentes disciplines scientifiques ou non. Ces enseignements permettent éventuellement de changer de portail et/ou d’acquérir des compétences diversifiées.

Chaque semestre permet l’acquisition de 30 points ECTS.

Aide à la réussite
En 1ère année, l’enseignement des disciplines fondamentales se fait par petits groupes sous forme de cours-TD. Chaque groupe est suivi par un seul enseignant par discipline pour un meilleur suivi pédagogique.

Les connaissances sont évaluées en contrôle continu mensuel suivi d’un contrôle terminal.

Un soutien pédagogique est mis en place en travaux dirigés en maths, physique et chimie. Un tutorat est également proposé sur ces matières fondamentales par l’UFR Sciences et Techniques. Il est assuré par des étudiants de Master sous la responsabilité d’un enseignant.

Un suivi pédagogique par un enseignant référent est mis en place tout au long de l’année du L1.
Organisation
Cette 1ère année est composée, outre l’anglais et les enseignements libres, de mathématiques, de physique, de chimie et de géosciences sous forme d’enseignements théoriques et/ou pratiques.

Le caractère expérimental des sciences de cette mention se traduit par l’existence de cours-TP.

Prérequis
Les étudiants doivent être titulaires d’un baccalauréat de préférence scientifique (série S) ou équivalent.

Contact/Secrétariat
Christelle Savoy (christelle.savoy@u-cregy.fr, 01 34 25 73 02)

Responsable
Sébastien Peralta (sebastien.peralta@u-cregy.fr, 01 34 25 70 11)

Enseignements

Semestre 1 (S1)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Mathématiques pour les sciences 1</td>
<td>7</td>
<td>18h</td>
<td>36h</td>
<td>-</td>
</tr>
<tr>
<td>UE2</td>
<td>Chimie 1 : Introduction à la chimie</td>
<td>8</td>
<td>18h</td>
<td>60h</td>
<td>6h</td>
</tr>
<tr>
<td>UE3</td>
<td>Physique 1 : Introduction à la physique</td>
<td>8</td>
<td>26h</td>
<td>48h</td>
<td>18h</td>
</tr>
<tr>
<td>UE4</td>
<td>Géosciences : Introduction aux géosciences</td>
<td>4</td>
<td>15h</td>
<td>18h</td>
<td>-</td>
</tr>
<tr>
<td>UE5</td>
<td>Anglais</td>
<td>3</td>
<td>-</td>
<td>18h</td>
<td>-</td>
</tr>
<tr>
<td>UE6</td>
<td>Ouverture professionnelle, culturelle et sportive</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UE1 Mathématiques pour les sciences 1
Enseignant :
Contenu

UE2 Chimie 1 : Introduction à la chimie
Enseignant : S. PERALTA
Contenu
Introduction : Généralités et rappels sur l’atome
Partie I : Atomistique
 Chap. I : Spectres d’émission et d’absorption
 Chap. II : Atome à un électron : les hydrogénoïdes
 Chap. III : Les atomes polyélectroniques
 Chap. IV : La liaison dans les molécules isolées – Théories simples (Lewis + VSEPR)
 Chap. V : Les liaisons ioniques et covalentes
 Chap. VI : Les interactions moléculaires
Partie II : Chimie des solutions
 Chap. I : Introduction à la notion d’équilibre chimique
 Chap. II : Réactions Acide-Base (calcul de pH par la méthode de la réaction prépondérante)
 Chap. III : Réaction d’oxydo-réduction
Conclusion : Retour sur les propriétés chimiques dans le tableau périodique (Evolution des propriétés oxydo-réduction et acide-base)

UE3 Physique 1 : Introduction à la physique
Enseignant : C. SANTAMARIA
Contenu

UE4 Géosciences : Introduction aux géosciences
Enseignant : S. LALLEMANT
Contenu
Semestre 2 (S2)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Mathématiques pour les sciences 2</td>
<td>5,5</td>
<td>18h</td>
<td>36h</td>
<td>-</td>
</tr>
<tr>
<td>UE2</td>
<td>Chimie 2 : Chimie des solutions et thermochimie</td>
<td>5,5</td>
<td>16,5h</td>
<td>21h</td>
<td>9h</td>
</tr>
<tr>
<td>UE3</td>
<td>Physique 2</td>
<td>5</td>
<td>12h</td>
<td>19,5h</td>
<td>9h</td>
</tr>
<tr>
<td>UE4</td>
<td>Libre</td>
<td>3</td>
<td>18h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UE5</td>
<td>Anglais</td>
<td>3</td>
<td>-</td>
<td>18h</td>
<td>-</td>
</tr>
</tbody>
</table>

Unités d’enseignement au choix

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choix physique chimie</td>
<td>UE6</td>
<td>Chimie 3 : Introduction à la chimie organique</td>
<td>2,5</td>
<td>10,5h</td>
<td>10,5h</td>
</tr>
<tr>
<td></td>
<td>UE6’</td>
<td>Physique 3</td>
<td>3,5</td>
<td>6h</td>
<td>12h</td>
</tr>
<tr>
<td>ou Choix sciences de la Terre</td>
<td>UE6</td>
<td>Du minéral à la roche</td>
<td>3</td>
<td>10,5h</td>
<td>13,5h</td>
</tr>
<tr>
<td></td>
<td>UE6’</td>
<td>Le temps en géologie</td>
<td>3</td>
<td>10,5h</td>
<td>13,5h</td>
</tr>
</tbody>
</table>
UE1 Mathématiques pour les sciences 2

Enseignant :

Contenu

UE2 Chimie 2 : Chimie des solutions et thermochimie

Enseignant : A. RIMBAUD

Contenu

Partie A : Chimie des solutions

Pré-requis de S1 : acides/bases, calcul de pH, couples redox, potentiels redox, relation de Nernst

Conductimétrie et titrages en solution aqueuse

I. Conductivité des solutions
 a. Conductivité d’une solution, mesure de la conductance d’une solution, constante de cellule, conductivité molaire, conductivité molaire limite à dilution infinie
 b. Cas d’un électrolyte fort : Λ = Λ₀ − A √C
 c. Cas d’un électrolyte faible : présentation de différentes courbes expérimentales
 d. Loi d’additivité de Kohlrausch : à dilution infinie et à faible concentration

II. Généralités sur les dosages
 a.Définition d’un titrage et d’un dosage
 b. Dosage par droite d’étalonnage
 c. Caractéristiques d’une réaction de titrage : quantitative et rapide
 d. Distinction entre nature du titrage (nature de la réaction : acido-basique, complexation, précipitation, redox) et technique de suivi (colorimétrique, pH-métrique, conductimétrique, potentiométrique, spectrophotométrique)
 e. Définition de l’équivalence et détermination du point équivalent
 i. Indicateurs colorés
 ii. Détermination du point d’inflexion d’une courbe de titrage
 iii. Détermination d’une rupture de pente

III. Titrages acido-basiques
 a. Courbe de titrage pH-métrique d’un monoacide fort par une monobase forte
 i. Expression du pH en fonction de x pour x<1, x=1, x>1 (x paramètre de dosage)
 ii. Allure de la courbe et caractéristiques
 iii. Allure de la courbe de dosage conductimétrique d’un monoacide fort par une monobase forte
 iv. Allure des courbes de titrages pH-métriques et conductimétriques d’une monobase forte par un acide fort
 b. Courbe de titrage pH-métrique d’un monoacide faible par une monobase forte
i. Expression du pH en fonction de x pour x<1, x=1, x>1
ii. Domaine d’Henderson
iii. Allure de la courbe et caractéristiques (point d’inflexion)
iv. Allure de la courbe de dosage conductimétrique d’un monoacide faible par une monobase forte
v. Allure des courbes de titrages pH-métriques et conductimétriques d’une monobase faible par un monoacide fort
c. Titrages des polyacides ou des mélanges d’acides (ou mélange de bases et polybases)
 i. Acidités dosées séparément si $\Delta pK_A>$4
 ii. Acidités dosées simultanément

IV. Titrages redox
 a. Dosage des ions ferreux Fe(II) par les ions permanganates MnO_4^-
 b. Expression du potentiel pour les différentes étapes en fonction de x
 c. Allure de la courbe $\Delta E=f(x)$

Partie B : Thermodynamique chimique

Prerequis : thermodynamique physique (premier et second principe de la thermodynamique)

I. Le deuxième principe de la thermodynamique
 a. Fonction entropie
 i. Énoncé du second principe de la thermodynamique
 ii. Entropie d’échange, entropie créée
 b. Exemple de calcul d’entropie
 i. Entropie d’un gaz parfait
 ii. Entropie d’un solide à capacité calorifique constante
 iii. Entropie de changement d’état
 c. Entropie et désordre
 i. Ordre et désordre
 ii. Troisième principe de la thermodynamique
 iii. Entropies absolues
 d. Les potentiels thermodynamiques
 i. Condition d’évolution et d’équilibre d’un système
 ii. Énergie libre F – Première relation de Gibbs-Helmholtz
 iii. Enthalpie libre G – Deuxième relation de Gibbs-Helmholtz
 iv. Enthalpie libre d’un gaz parfait

II. Applications du premier et du second principe aux phénomènes physico-chimiques
 a. Grandeurs molaires partielles
 b. Rappels des états standard – Grandeurs standard
 c. Grandeurs de réaction, grandeurs standard de réaction, grandeurs standard de formation
 d. Loi de Hess
 e. Enthalpie standard de dissociation des liaisons
 f. Relation de Kirchhoff
 g. Entropie de réaction et enthalpie libre de réaction
 h. Entropie standard et enthalpie libre standard de formation
 i. Variation des grandeurs standard de réaction (entropie et enthalpie libre) avec la
température

III. Potentiel chimique
 i. Définition du potentiel chimique
 ii. Relation de Gibbs-Duhem
 b. Variation du potentiel chimique avec la pression et la température
 c. Expressions du potentiel chimique
 i. D’un constituant gazeux : gaz parfait
 ii. D’un constituant en phase condensée : constituant pur
 iii. D’un constituant dans un mélange, dans une solution : mélange idéal, mélange non idéal, coefficient d’activité

IV. Equilibres de changement d’état
 a. Diagramme d’équilibre P=f(t)
 i. Courbes de fusion, de vaposisation, de sublimation
 ii. Point triple
 iii. Point critique
 b. Etude thermodynamique de l’équilibre physique pour un corps pur
 i. Condition d’évolution et d’équilibre
 ii. Relation de Clapeyron
 iii. Relations entre chaleurs latentes aux points triples

UE3 Physique 2

Enseignant : H. OUGHADDOU

Contenu

Choix physique chimie

UE6 Chimie 3 : Introduction à la chimie organique

Enseignant : E. CHELAİN

Contenu

I : Introduction
 1) Grandes fonctions
 2) Construction du nom - Priorité des fonctions
 3) Degré d’oxydation des fonctions

II : La liaison chimique
 1) Généralités
 2) La liaison ionique
 3) La liaison covalente
4) La liaison covalente polaire (effets inductifs)
5) La liaison covalente de coordination
6) Les orbitales hybrides (orbitales atomiques, moléculaires, hybridations sp³, sp², sp)

III : Structure et représentation des molécules organiques
1) Formule développée plane – Isomérie de position
2) Formule développée plane simplifiée et topologique
3) Géométrie des molécules
4) Isomérie de fonction
5) Isomérie de configuration dans les cycles et doubles liaisons
6) Isomérie de conformation
 a) molécules acycliques
 b) molécules cycliques (cyclohexanes)

IV : Stéréochimie
1) Définition
2) Chiralité et énantiomère
3) Activité optique
4) Configuration absolue
5) Représentation des molécules chirales
6) Molécules chirales présentant plusieurs carbones asymétriques : les diastéréoisomères

UE6’ Physique 3

Enseignant : H. OUGHADDOU

Contenu

Choix sciences de la Terre

UE6 Du minéral à la roche

Enseignant : P. ROBION

Contenu

[Texte]
UE6’ Le temps en géologie

Enseignant : D. FRIZON DE LAMOTTE

Contenu
Objectifs
La 2e année est une année de pré-spécialisation en chimie ou en physique et chimie.

Contact/Secrétariat
Nathalie Moreau (nathalie.moreau@u-cergy.fr, 01 34 25 70 87)

Responsable
Thierry Brigaud (thierry brigaud@u-cergy.fr, 01 34 25 70 66)

Admission
Admission de droit pour les étudiants suivant un des parcours menant à la licence de chimie ou de physique et chimie.

Admission sur dossier et/ou entretien pour les étudiants issus d’autres parcours, les élèves de classes préparatoires et les étudiants titulaires de toute formation équivalente, française ou étrangère. Une commission compétente se réunira pour étudier les dossiers.

Enseignements

Semestre 3 (S3)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Mathématiques pour les sciences 3</td>
<td>4</td>
<td>12h</td>
<td>24h</td>
<td>-</td>
</tr>
<tr>
<td>UE2</td>
<td>Introduction à l’électromagnétisme</td>
<td>6</td>
<td>24h</td>
<td>21h</td>
<td>9h</td>
</tr>
<tr>
<td>UE3</td>
<td>Atomistique – Liaisons chimiques</td>
<td>2</td>
<td>10,5h</td>
<td>10,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE4</td>
<td>Chimie inorganique</td>
<td>3,5</td>
<td>15h</td>
<td>15h</td>
<td>-</td>
</tr>
<tr>
<td>UE5</td>
<td>Chimie organique</td>
<td>2,5</td>
<td>12h</td>
<td>12h</td>
<td>-</td>
</tr>
<tr>
<td>UE6</td>
<td>Thermo et Cinétique</td>
<td>4</td>
<td>13,5h</td>
<td>13,5h</td>
<td>12h</td>
</tr>
<tr>
<td>UE7</td>
<td>Chimie générale</td>
<td>2</td>
<td>9h</td>
<td>9h</td>
<td>-</td>
</tr>
<tr>
<td>UE8</td>
<td>Informatique 1</td>
<td>2</td>
<td>6h</td>
<td>12h</td>
<td>-</td>
</tr>
<tr>
<td>UE9</td>
<td>Anglais scientifique</td>
<td>2</td>
<td>-</td>
<td>10h</td>
<td>8h</td>
</tr>
<tr>
<td>UE10</td>
<td>Ouverture professionnelle, culturelle et sportive</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UE1 Mathématiques pour les sciences 3
Enseignant :
Contenu

UE2 Introduction à l’électromagnétisme
Enseignant :
Contenu

UE3 Atomistique – Liaisons chimiques
Enseignant : A. RIMBAUD
Contenu
Chap. I Postulats et bases de la mécanique quantique
1. Aspects ondulatoire et corpusculaire de la lumière
 a. Caractère ondulatoire de la lumière
 b. Caractère corpusculaire
 c. Dualité onde-corpsucule
2. Aspect ondulatoire de la matière
 a. Hypothèse de de Broglie (1924)
 b. Expérience de Davisson et Germer (1927)
3. Principe d’incertitude de Heisenberg (1927)
4. Postulats et bases de la mécanique quantique (ondulatoire)
 a. Notion de probabilité de présence et de fonction d’onde
 b. Quantification de l’énergie
Chap. II Les orbitales atomiques
1. Solutions de l’équation de Schrödinger pour l’atome d’hydrogène
 a. Énergies
 b. Nomenclature des fonctions d’onde – Nombres quantiques n, l, m
 c. Description des fonctions d’onde : partie radiale, partie angulaire –
 Représentation spatiale
 d. Densité de probabilité radiale
2. Spin de l’électron – Nombre quantique magnétique de spin, m_s
3. Atomes hydrogénoïdes – Energies, fonctions d’onde
4. Orbitales atomiques des atomes polyélectroniques
 a. Approximation orbitale
 b. Expressions des orbitales atomiques
 c. Energies des O.A.

Chap. III Description de liaison chimique par la théorie des orbitales moléculaires (cas des molécules diatomiques)

1. Approximation fondamentale
 a. Approximation de Born-Hoppenheimer
 b. Approximation orbitale
 c. Expression des OM – Théorie LCAO
 d. Quelques molécules diatomiques hétéronucléaires

2. Etude des molécules de type H₂ (interaction entre 2 OA 1s)
 a. Recherche des OM
 b. Densité électronique
 c. Représentation des OM
 d. Diagramme énergétique
 e. Configurations électroniques, indices de liaison et propriétés magnétiques

3. Molécules diatomiques homonucléaires
 a. Choix des OA à combiner pour former les OA
 b. Obtenir un recouvrement efficace
 c. Critère de symétrie
 d. Éléments de symétrie
 e. Symétrie d’un nuage électronique
 f. Recouvrements non nuls
 g. Densité électronique associée aux OM
 h. Critère énergétique
 i. Application aux molécules O₂, F₂, Li₂, Be₂, B₂, C₂, N₂

4. Molécules diatomiques hétéronucléaires
 a. Principe
 b. Application : molécule LiH

Chap. IV Description de liaison chimique par la théorie de la liaison de valence ou orbitales moléculaires localisées (cas des molécules polyatomiques)

1. Squelette σ
 i. Hybrisation des OA à l’intérieur d’une molécule : hybrisation sp³, sp², sp
 ii. Construction des orbitales de liaison
 iii. Construction des orbitales moléculaires localisées entre deux atomes voisins

2. Les orbitales moléculaires π (molécules polyatomiques avec liaisons multiples)
 i. Construction des OM π localisées
 ii. Les OM π délocalisées – Mésomérie – Exemple des molécules C₆H₆
UE4 Chimie inorganique

Enseignant :

Contenu

UE5 Chimie organique

Enseignant :

Contenu

UE6 Thermochimie - Cinétique

Enseignant : A. RIMBAUD

Contenu

Chap I. Complexes en solution aqueuse
1. Constante de formation et de dissociation d’un complexe
2. Domaine de prédominance
3. Complexes successifs
4. Couples donneurs échangeurs de ligands ou d’ions métalliques
5. Rôle du solvant eau
6. Prévision des réactions
 a. Echelle des pKd
 b. Méthode de la RP
7. Calcul des concentrations d’un complexe en solution, d’un amphotère en solution
8. Compétition réaction acide-base et réactions de complexation

Chap II. Thermodynamique chimique
1. Variation de l’enthalpie libre G au cours d’une réaction chimique
2. Conditions d’évolution et d’équilibre
3. Constante d’équilibre
 a. Expression de l’enthalpie libre de réaction en fonction du produit de réaction Q
 b. Expression de la constante d’équilibre K_{eq}
 c. Influence de la température sur la constante d’équilibre : relation de Van’t Hoff
4. Variance
5. Déplacement de l’équilibre chimique
 a. Loi de modération : principe de Le Châtelier
b. Influence de la température : loi de Van’t Hoff
c. Influence de la pression
d. Influence du volume
e. Addition de constituant actif, de constituant inactif

Chap III. Cinétique chimique
1. Facteurs de la cinétique
 a. Définition de la vitesse d’une réaction
 i. Ordre global
 ii. Ordre partiel
 b. Influence de la température : loi d’Arrhénius
2. Cinétique formelle
 a. Étude des réactions d’ordre 0, 1, 2, 3
3. Méthodes expérimentales de la cinétique chimique
 a. Méthodes physiques et chimiques
 b. Détermination expérimentale de l’ordre d’une réaction
 i. Méthode de dégénérescence de l’ordre d’une réaction (méthode d’Ostwald)
 ii. Méthode différentielle
 iii. Méthode des temps de demi-réaction

UE7 Chimie générale

Enseignant :

Contenu

UE8 Informatique 1

Enseignant : E. CONGIU

Contenu

I. Introduction à la programmation en langage Python
II. Genèse d’un premier programme
 a. Qu’est-ce qu’un programme ?
 b. Qu’est-ce qu’un langage ?
 c. Installation et prise en main de l’interpréteur Python
 d. Écriture d’un programme : syntaxe et instructions
 e. Compilation et exécution du programme
III. Règles de programmation
 a. Convention de nommage – Convention syntaxique
 b. Utilisation des commentaires – Pourquoi commenter les développements ?
 c. Améliorer la lisibilité des programmes : indentation du code, découpage du code
IV. Les variables
 a. Qu’est-ce qu’une variable ?
 b. Les types : entiers, chaînes de caractères, nombres réels, listes
 c. Déclaration, définition et initialisation d’une variable – les constantes
 d. Saisie, affichage, affectation, conversion de type

V. Opérateurs et expressions
 a. Les différents opérateurs
 b. Combinaison d’opérateurs
 c. Expression booléenne

VI. Les structures de contrôle
 a. Les sélections alternatives (IF, ELSE, ELIF)
 b. Les blocs d’instructions
 c. Les boucles itératives (WHILE, FOR)
 d. Imbrication des instructions

VII. Les procédures et les fonctions
 a. Définitions : procédure, fonction – Intérêt
 b. Le passage de paramètres
 c. Le code retour d’une fonction – Appel de fonctions

VIII. Travaux dirigés
 a. Ecriture, compilation et exécution d’un premier programme Python
 b. Manipulation de variables
 c. Utilisation des structures de contrôle
 d. Savoir interpréter les différents messages d’erreur
 e. Nombres aléatoires
 f. Organiser ses données sous forme de fichiers
Semestre 4 (S4)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Mathématiques pour les sciences 4</td>
<td>4,5</td>
<td>12h</td>
<td>24h</td>
<td>-</td>
</tr>
<tr>
<td>UE2</td>
<td>Physique ondulatoire</td>
<td>6,5</td>
<td>18h</td>
<td>21h</td>
<td>15h</td>
</tr>
<tr>
<td>UE3</td>
<td>Réactivité en chimie organique</td>
<td>3,5</td>
<td>14h</td>
<td>14h</td>
<td>-</td>
</tr>
<tr>
<td>UE4</td>
<td>Chimie expérimentale</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>28h</td>
</tr>
<tr>
<td>UE5</td>
<td>Physique expérimentale 2</td>
<td>3</td>
<td>10h</td>
<td>-</td>
<td>20h</td>
</tr>
<tr>
<td>UE6</td>
<td>Informatique 2</td>
<td>2</td>
<td>4h</td>
<td>-</td>
<td>15h</td>
</tr>
<tr>
<td>UE7</td>
<td>Libre</td>
<td>2</td>
<td>18h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UE8</td>
<td>Anglais</td>
<td>2</td>
<td>-</td>
<td>18h</td>
<td>-</td>
</tr>
<tr>
<td>UE9</td>
<td>PEC</td>
<td>2</td>
<td>-</td>
<td>10h</td>
<td>-</td>
</tr>
</tbody>
</table>
UE1 Mathématiques pour les sciences 4

Enseignant :

Contenu

UE2 Physique ondulatoire

Enseignant :

Contenu

UE3 Réactivité en chimie organique

Enseignant :

Contenu

UE4 Chimie expérimentale

Enseignant : E. CHELAIN (chimie organique) /

Contenu

Travaux pratiques : 5 séances de 4h

1. Technique de purification : la distillation
2. Techniques chromatographiques
3. Séparation sélective de 3 composés organiques dans un mélange
4. Réduction de la benzophénone par KBH₄ en diphénylméthanol
5. Réaction de l’acétylacétate d’éthyle avec l’éthane-1,2-diol
UE5 Physique expérimentale 2
Enseignant :
Contenu

UE6 Informatique 2
Enseignant :
Contenu
Objectifs
La 3e année est une année de spécialisation en chimie

Contact/Secrétariat
Nadine Echinard (nadine.echinard@u-cergy.fr, 01 34 25 70 14)

Responsable
Pascal Griesmar (pascal.griesmar@u-cergy.fr, 01 34 25 70 07)

Admission
Admission de droit pour les étudiants suivant un des parcours menant à la licence de chimie ou de physique et chimie.

Admission sur dossier et/ou entretien pour les étudiants issus d’autres parcours, les élèves de classes préparatoires et les étudiants titulaires de toute formation équivalente, française ou étrangère. Une commission compétente se réunira pour étudier les dossiers.

Enseignements

Semestre 5 (S5)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Thermochimie</td>
<td>1,5</td>
<td>9h</td>
<td>9h</td>
<td>-</td>
</tr>
<tr>
<td>UE2</td>
<td>Atomistique</td>
<td>1,5</td>
<td>7,5h</td>
<td>7,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE2’</td>
<td>Spectroscopies</td>
<td>1</td>
<td>6h</td>
<td>6h</td>
<td>-</td>
</tr>
<tr>
<td>UE2’’</td>
<td>Chimie des solutions</td>
<td>2,5</td>
<td>15h</td>
<td>14h</td>
<td>-</td>
</tr>
<tr>
<td>UE3</td>
<td>Chimie organique générale</td>
<td>3,5</td>
<td>17,5h</td>
<td>16,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE4</td>
<td>TP Chimie-physique 1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>18h</td>
</tr>
<tr>
<td>UE4’</td>
<td>TP Chimie organique</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>14h</td>
</tr>
<tr>
<td>UE5</td>
<td>Mécanique quantique</td>
<td>6</td>
<td>27h</td>
<td>27h</td>
<td>12h</td>
</tr>
<tr>
<td>UE6</td>
<td>Thermophysique</td>
<td>6</td>
<td>24h</td>
<td>32h</td>
<td>12h</td>
</tr>
<tr>
<td>UEL</td>
<td>Libre</td>
<td>2</td>
<td>18h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UELV</td>
<td>Anglais</td>
<td>2</td>
<td>-</td>
<td>18h</td>
<td>-</td>
</tr>
<tr>
<td>UE</td>
<td>Ouverture professionnelle, culturelle et sportive</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UE1 Thermochimie

Enseignant : G. DOSSEH

Contenu

UE2 Atomistique

Enseignant : A. RIMBAUD

Contenu

Chap. I Introduction à la mécanique quantique
 a. Dualité onde-corps-cule - Lumière et corpuscule de matière - Quantification
 b. Fonction d’onde - Amplitude de probabilité - Densité de probabilité de présence
 c. Condition de normalisation
 d. Equation de Schrödinger dépendante du temps et indépendante du temps
 e. Opérateur Hamiltonien
 f. Relation d’incertitude de Heisenberg
 g. Opérateurs, équations aux valeurs propres, fonctions propres, valeurs propres
 h. Produit scalaire
 i. Recouvrement – Orthogonalité
 j. Opérateurs linéaires et hermitiques
 k. Définition de la dégénérescence
 l. Enoncé des Postulats Mécanique Quantique
 m. Valeur moyenne d’une grandeur physique

Chap. II Atome d’hydrogène et hydrogénoïdes
 a. Rappels et compléments au cours de L2
 i. Valeurs propres de H (ou énergies)
 ii. Nomenclature des fonctions propres
 iii. Nombres quantiques
 iv. Description des fonctions propres : fonctions radiales et angulaires
 v. Etude des fonctions ns, fonctions np et fonctions nd
 vi. Densité de probabilité radiale
 b. Moment cinétique orbital et moment cinétique de spin
 i. Opérateur vecteur moment cinétique orbital L
 ii. Expression de l’opérateur \mathbf{L}^2 en coordonnées sphériques
 iii. Fonctions propres de \mathbf{L}^2 : harmoniques sphériques $Y_{lm}(\theta,\phi)$
 iv. Valeurs propres de \mathbf{L}^2
 v. Expression de l’opérateur L_z, composante sur l’axe z de l’opérateur vecteur L en coordonnées sphériques – fonctions propres et valeurs propres de L_z
 vi. Nombres quantiques correspondants l et m_l
 vii. Moment cinétique intrinsèque de l’électron S appelé spin
viii. Nombre quantique magnétique de spin
ix. Opérateurs S^2 et S_z: valeurs propres, nombres quantiques correspondants s et m
x. Moment cinétique général J
xi. Addition et couplage de 2 moments cinétiques J_1 et J_2
xii. Théorème d’addition des moments cinétiques

Chap. III Atomes polyélectroniques
a. Rappels et compléments de L2
i. Approximation orbitalaire: expression mathématique et nomenclature des OA
ii. Energies des OA: règle de Klechkowsky
iii. Configuration électronique d’un atome: principe d’exclusion de Pauli
iv. Electrons de cœur, électrons de valence
v. Rayon des OA
vi. Energie d’ionisation

b. États atomiques et termes spectroscopiques: $2s + 1 L$
 i. Définition d’un terme spectroscopique
 ii. Dégénérescence d’un terme spectroscopique
 iii. Méthode générale de détermination des termes spectroscopiques
 iv. Etude des cas particuliers: couches complètes, configurations à 1 électron actif, configurations à 2 électrons actifs: e⁻ non équivalents et e⁻ équivalents
 v. Ordre énergétique des termes spectroscopiques: règles de Hund

c. Termes de structure fine: couplage spin-orbite
 i. Classement terme structure fine: 3ᵉ règle de Hund

d. Spectres électroniques des atomes
 i. Spectres atomiques
 ii. Règles de sélection

UE2’ Spectroscopies

Enseignant : A. EL HAITAMI

Contenu
1. Spectrophotométrie UV-Visible
2. Spectroscopie infrarouge
3. Résonance magnétique nucléaire
UE2’’ Chimie des solutions

Enseignant : S. PERALTA

Contenu

Introduction

Chap. I Relations générales
 I. Concentrations et activités
 II. Relations générales

Chap. II Réactions acides/Bases
 I. Généralités et définitions
 II. Diagrammes de dilution (solvant aqueux et solvant non-aqueux)
 III. Diagrammes de distribution
 IV. Détermination graphique du pH

Chap. III Complexes solubles
 I. Généralités et définitions
 II. Prévision des réactions
 III. Diagrammes logarithmiques

Chap. IV Complexes peu solubles
 I. Généralités et définitions
 II. Solubilité des ions sans propriétés acide/base
 III. Solubilité et acidités
 IV. Solubilité d’un complexe soluble en équilibre avec une forme peu soluble

Chap. V Réactions d’oxydo-réduction : Application aux diagrammes de Pourbaix
 I. Généralités et définitions
 II. Diagrammes de Pourbaix (tracés et exploitations)

UE3 Chimie organique générale

Enseignant : T. BRIGAUD

Contenu

Chap. I La structure et la réactivité moléculaire vues du côté des orbitales
 1. Les orbitales atomiques
 2. Les orbitales moléculaires
 3. Les orbitales hybrides
 4. La réaction chimique : attractions électrostatiques et recouvrements d’orbitales
 5. Nucléophiles, électrophiles radicaux
 6. Quelques réactions de la chimie organique vues par les orbitales frontières
 7. Nucléophiles / électrophiles durs et mous (HSAB)
 8. Conjugaison, aromaticité
 9. Hyperconjugaison

Chap II. La conformation des molécules
 1. Analyse conformationnelle en série acyclique
 2. Analyse conformationnelle en série cyclique
Chap III. Stéréoisomérie
 1. Notion de configuration
 2. Chiralité énantiomérie
 3. Diastéréoisomérie
 4. Prochiralité
 5. La préparation de substances optiquement actives

Chap IV. Les réactions organiques
 1. Aspect thermodynamique d’une réaction
 2. Aspect cinétique d’une réaction
 3. Profil énergétique d’une réaction
 4. Structure des états de transition : postulat de Hammond
 5. Principe de Curtin-Hammett
 6. Effets isotopiques

Chap V. La substitution nucléophile sur carbone saturé
 1. Définition
 2. Mécanismes

Chap VI. Les réactions d’élimination
 1. Définition
 2. Mécanismes

Chap VII. Les alcènes
 1. Préparation
 a. Réduction des alcynes
 b. Réaction de Wittig
 c. Réactions d’éliminations
 2. Réactivité des alcènes
 a. Réductions
 b. Additions électrophiles
 c. Réactions d’oxydations
 d. Formations de liaisons C-C
 e. Réactions radicalaires

UE4 TP Chimie-physique

Enseignant : P.-H. AUBERT

Contenu
UE4’ TP Chimie organique

Enseignant : E. CHELAIN

Contenu
Travaux pratiques : 2 séances de 7h

1. Synthèse d’un intermédiaire avancé du Prozac
2. Synthèse de la Lidocaïne

UE5 Mécanique quantique

Enseignant : P. LECHEMINANT

Contenu

UE6 Thermophysique

Enseignant : S. CANTIN-RIVIERE

Contenu

1. Systèmes macroscopiques
 a. Systèmes fermés
 b. Systèmes ouverts
 c. Systèmes isolés
2. Bilans d’énergie
 a. Energie interne
 b. Premier principe
3. Entropie échangée, entropie créée
 a. Second principe
 b. Troisième principe
4. Potentiels thermodynamiques
5. Machines thermiques
6. Transitions de phase d’un corps pur
7. Phénomènes de transport
 a. Diffusion thermique
 b. Diffusion de particules
Semestre 6 (S6)

<table>
<thead>
<tr>
<th>UE</th>
<th>Intitulé</th>
<th>ECTS</th>
<th>Cours</th>
<th>TD</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>Physique expérimentale 3</td>
<td>2,5</td>
<td>9h</td>
<td>-</td>
<td>21h</td>
</tr>
<tr>
<td>UE1'</td>
<td>Physique expérimentale 4</td>
<td>2,5</td>
<td>9h</td>
<td>-</td>
<td>21h</td>
</tr>
<tr>
<td>UE2</td>
<td>Electromagnétisme</td>
<td>2,5</td>
<td>13,5h</td>
<td>13,5h</td>
<td>8h</td>
</tr>
<tr>
<td>UE3</td>
<td>Optique physique</td>
<td>2,5</td>
<td>13,5h</td>
<td>13,5h</td>
<td>8h</td>
</tr>
<tr>
<td>UE4</td>
<td>Chimie organique générale</td>
<td>3</td>
<td>19,5h</td>
<td>19,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE5</td>
<td>Cinétique chimique</td>
<td>2</td>
<td>9,5h</td>
<td>10,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE6</td>
<td>Electrochimie</td>
<td>2</td>
<td>13h</td>
<td>12h</td>
<td>-</td>
</tr>
<tr>
<td>UE7</td>
<td>Liaison chimique</td>
<td>2</td>
<td>12,5h</td>
<td>9,5h</td>
<td>-</td>
</tr>
<tr>
<td>UE8</td>
<td>TP Chimie organique</td>
<td>1,5</td>
<td>-</td>
<td>-</td>
<td>21h</td>
</tr>
<tr>
<td>UE8'</td>
<td>TP Chimie-physique</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>12h</td>
</tr>
<tr>
<td>UE9</td>
<td>Chimie inorganique 2</td>
<td>2</td>
<td>14h</td>
<td>14h</td>
<td>-</td>
</tr>
<tr>
<td>UE9'</td>
<td>TP Chimie inorganique</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>12h</td>
</tr>
<tr>
<td>UEL</td>
<td>UE Libre</td>
<td>2</td>
<td>18h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UE</td>
<td>Ouverture professionnelle, culturelle et sportive</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE</td>
<td>Stage de découverte en entreprise</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UE1 Physique expérimentale 3- TP

Enseignant : K. HRICOVINI

Contenu
Il s’agit d’un enseignement expérimental composé de tps tournants sur 9 séances de 3h + 1 examen pratique.
Divers domaines de la physique comme l’électronique (oscillateur à résistance négative, multiplicateur), la mécanique (gyroscope, couplage), les ondes (câble coaxial, Michelson) ou encore la thermodynamique (étude d’un point triple) seront abordés. Chaque séance débutera par une discussion avec l’enseignant de la modélisation théorique du sujet à étudier et se poursuivra par une mise oeuvre expérimentale afin de pouvoir confronter la modélisation à l’expérience.

UE1’ Physique expérimentale 4 - Projet

Enseignant : G. REMY

Contenu
Il s’agit d’un enseignement expérimental composé d’un petit projet à choisir parmi, par exemple, la mesure de la vitesse de la lumière, l’étude des figures de Chladni, la propagation d’une onde de chute dans une chaine de Kapla, un instrument d’optique, un oscillateur anharmonique, le décollage d’une fusée à eau, la tension superficielle, la modulation d’amplitude et de fréquence ... ou tout autre thème que vous souhaiteriez développer. L’évaluation se fera lors d’une soutenance orale (powerpoint) où vous présenterez les expériences mises en oeuvre et où vous discuterez des résultats obtenus.

UE2 Electromagnétisme

Enseignant : V. ILAKOVAC

Contenu

UE3 Optique physique

Enseignant : H. OUGHADDOU

Contenu
Contenu

I. Les diènes
 a. Quelques données
 b. Les orbitales
 c. Enthalpies d’hydrogénation
 d. Additions d’hydracides
 e. Réactions de Diels-Alder
 i. Interprétation orbitale
 ii. Stéréochimie, conformation
 iii. Profil énergétique
 iv. Aspect cinétique
 v. Régiosélectivité
 vi. Effets des substituants
 vii. Stéréospécificité
 viii. Règle d’Alder (endosélectivité)
 ix. Catalyse (énantiosélective)
 x. Hétéro Diels-Alder
 xi. Cycloadditions 1,3 dipolaires

II. Les réactions péricycliques
 a. Transposition de Cope
 b. Transposition de Claisen et variantes (Ireland, Johnson, Eschenmoser)

III. Les alcynes
 a. Propriétés
 i. Longueurs de liaison, stabilité, acidité, spectroscopies
 b. Préparation
 i. A partir de dérivés dihalogénés
 ii. Réaction de Corey-Fuchs
 iii. Réaction de Seyferth-Gilbert
 iv. A partir des alcynes vrais
 c. Réactivité
 i. Réactivité des électrons π
 1. Addition de HX
 2. Addition de X_2
 3. Addition de H$_2$O
 4. Ozonolyse
 5. Réduction
 ii. Activation de la liaison C-H
 1. Espèces organométalliques
 2. Alkylation
 3. Couplages Eglinton, Glaser, Cadiot-Chodkiewicz
4. Couplage de Sonogashira

IV. Les dérivés aromatiques
 a. Aromaticité
 i. Orbitales, enthalpie d’hydrogénation, spectroscopies
 b. Préparation
 i. Déshydrogénation
 ii. Oxydation
 iii. Halogénation benzylique
 c. Réactivité
 i. Réduction
 1. Réaction de Birch, hydrogénation
 ii. SEar
 1. Nitration, halogénation, Friedel et Crafts (alkylation, acylation), formylation, sulfonation
 iii. SE d’aromatiques
 iv. SN de sels de diazonium
 v. SN via intermédiaire de Meisenheimer
 vi. SN via aryne
 vii. Couplage C-C catalysé par les métaux de transition
 d. Régiosélectivité
 i. Règle de Holleman
 ii. Réactivité
 iii. SEar sur les hétérocycles
 iv. SEar sur les dérivés polycycliques

V. Les dérivés halogénés
 a. Généralités
 b. Préparations
 c. Nucléophile et nucléophuge
 d. SN1/ SN2/ SNi/ SN2’
 e. E1 / E2

VI. Fonctions divalentes : aldéhydes, cétones, imines
 a. Aspect orbitalaire
 b. Spectroscopies
 c. Préparations
 i. Addition de lithiens sur les acides
 ii. Cuprate sur chlorure d’acyle
 iii. Magnésien sur nitrile
 iv. Acylation de Friedel et crafts
 v. Dithiane
 vi. Décarboxylation des beta-cétoesters
 vii. Oxydation des alcools
 viii. Ozonolyse
 ix. Hydratation des alcynes
x. Hydroboration des alcynes
xi. Réduction des chlorures d’acyles, esters, amides, nitriles
xii. Hydroformylation
d. Réactivités du C=O
 i. Hydrogénation
 ii. Addition d’eau
 iii. Addition d’alcool : hémiacétal, acétal, dithiane
 iv. Addition d’hydrazine, hydroxylamine : hydrazone... aminal
 v. Réactions de Wolf-Kischner
 vi. Addition de HCN
 vii. Réaction de Wittig
 viii. Addition d’ylure du soufre
 ix. Réaction de Bayer-Villiger
 x. Réduction par les métaux : couplage pinacolique, réaction de Bouveault-Blanc
e. Réactivités en alpha du C=O
 i. Equilibre céto-énolique
 ii. Alkylation des cétones
 iii. Alkylation d’énamine
 iv. Halogénation
 v. Aldolisation-crotonisation
 vi. Réaction de Mannich
 vii. Addition de Michael
 viii. Annélation de Robinson

VII. Fonctions trivalentes : acides, esters, amides, anhydrides, nitriles
 a. Propriétés
 b. Préparations
 i. Hydrolyse des nitriles
 ii. Réaction de Kolbe
 iii. Réaction haloforme
 iv. Oxydation des alcools, aldéhydes alcènes
 c. Réactivités
 i. Réaction d’estérification
 ii. Transestérification en milieu acide
 iii. Transestérification en milieu basique
 iv. Hydrolyse des esters
 v. Réactions des chlorures d’acyles avec alcools et amines
 vi. Réactions des acides : anhydride
 vii. Attaque des organométalliques
 viii. Réduction par les hydrures
 ix. Décarboxylation des beta-carotènes
 x. Décarboxylation de Hunsdiecker
 xi. Décarboxylation de Barton
xii. Réactivité en alpha
 1. Condensation de Claisen/Dieckmann
 2. Réaction de Knovenagel
 3. Réaction de Hell-Volhardt-Zelinsky
 4. Réaction de Perkin

UE5 Cinétique chimique

Enseignant : P. GRIESMAR

Contenu

Chap. I Cinétique chimique empirique
 I. Notions générales en cinétique chimique
 1. Définition de la vitesse d’une réaction dans le cas d’une réaction en solution homogène
 2. Notion d’ordre partiel par rapport à un réactif et notion d’ordre global
 3. Lois de vitesse
 II. Détermination expérimentale de l’ordre d’une réaction
 1. Méthode par intégration
 2. Méthode des temps de demi-réaction $t_{1/2}$
 3. Méthode de dégénérescence de l’ordre
 4. Méthode des vitesses initiales
 III. Relation empirique entre la constante de vitesse k et la température : loi empirique d’Arrhenius
 1. Présentation de la loi d’Arrhenius
 2. Détermination expérimentale de l’énergie d’activation E_a

Chap. II Études des mécanismes réactionnels
 I. Descriptions des mécanismes réactionnels
 1. Équation bilan et étapes élémentaires
 2. Notion d’intermédiaire réactionnel (IR) et d’état de transition (ET)
 3. Postulat de Hammond
 4. Méthodes d’approximations courantes
 II. Mécanisme réactionnel composé de réactions par stades
 1. Les réactions successives (ou consécutives)
 2. Les réactions jumelles (ou parallèles)
 3. Les réactions compétitives (ou parallèles)
 4. Les réactions opposées
 5. Relation entre E_{a1} et E_{a-1}
 III. Cas particulier appliqué aux réactions successives
 1. Approximation de l’Etat Quasi Stationnaire (AEQS)
 2. Approximation du prééquilibre

Chap. III Cinétiques caractéristiques
 I. Réaction enzymatique (Michaelis et Menten, 1913)
 II. Mécanisme de Lindemann (1922)

Chap. III Perturbation d’un système chimique à l’équilibre
I. Analyse temporelle d’une réaction chimique
 1. Représentation d’un système chimique
 2. Relation entre \(e(t) \) et \(s(t) \)
 3. Description de signaux d’excitation \(e(t) \)

II. Établissement de \(S(t) \)
 1. Étude du système sans excitation
 2. Prise en compte de l’excitation
 3. Réponse à un échelon
 4. Réponse à une perturbation sinusoidale

III. Application : Détermination des constantes de vitesse \(k_1 \) ET \(k_{-1} \)

IV. Étude d’un système avec l’AEQS

V. Exemple d’application : la réaction enzymatique (Michaelis-Menten)

Chap. IV Réactions radicalaires

I. Rupture de liaisons
 1. Rupture hétérolytique, ionique ou acido-basique
 2. Rupture homolytique ou radicaire
 3. Stabilité relative des ions ou des radicaux

II. Radicaux libres
 1. Caractéristiques générales
 2. Les atomes libres
 3. Radicaux organiques stables
 4. Radicaux organiques instables
 5. Moyens d’étude des radicaux

III. Analyse du mécanisme réactionnel pour les réactions radicalaires
 1. Synthèse de HBr
 2. Synthèse de \(\text{CH}_3\text{Br} \)

IV. Recherche d’un mécanisme réactionnel pour les réactions radicalaires
 1. Remarques générales
 2. Critère énergétique
 3. Bilan

V. Génératrices d’inhibiteurs de réactions radicalaires

Chap. V Notions sur la catalyse chimique

I. Notions générales
 1. Définition
 2. Chemin réactionnel
 3. Classement des types de catalyse

II. Exemples de catalyse homogène
 1. Catalyse acido-basique
 a. La catalyse acide
 b. La catalyse basique
 c. La catalyse acido-basique
 d. La catalyse acido-basique généralisée
 e. Mécanisme et loi de vitesse
 2. Étude de la réaction par les acides de Lewis : réaction de Friedel et Crafts
 3. Catalyse en oxydo-réduction
 4. Catalyse enzymatique ; Modèle de Michaelis
5. L’autocatalyse

III. Catalyse hétérogène
 1. Principes généraux
 2. Les différents types d’adsorption
 a. Physisorption
 b. Chimisorption
 c. Thermodynamique de l’adsorption
 3. Cinétique moléculaire d’adsorption
 4. Conclusion

IV. Catalyse par transfert de phase

V. Conclusion

UE6 Electrochimie

Enseignant : P.-H. AUBERT

Contenu

1. Introduction, définitions
 - Notion d’électrode, interface, oxydation/réduction

2. Cinétique électrochimique
 2.1. Rappels de cinétique en phase homogène
 2.2. Cinétique électrochimique
 2.3. Expression du courant

3. Transport de matière à l’électrode
 3.1. Introduction
 3.2. Flux ionique : la migration
 a. Mobilité ionique
 b. Conductivité ionique
 c. Nombre de transport
 3.3. Implication d’un autre mode de transport : la diffusion
 a. Etude de cas
 b. Expression du flux total
 c. Expression du courant
 3.4. Profils de diffusion
 3.5. Synoptiques de transfert de masse

4. Courbes intensité/potentiel (I/E)
 4.1. Introduction
 4.2. Effet du potentiel sur les concentrations
 4.3. Principe de processus électrochimique
 4.4. Etude de systèmes simples : O et R solubles
 4.5. Etude de systèmes particuliers
 a. Une des espèces est solide
 b. Espèces X participant à la réaction
 c. Fenêtre électrochimique : oxydation et réduction de l’eau
5. Application aux dosages électrochimiques
5.1. Evolution des courbes I/E au cours d’une réaction rédox
 a. Problématique
 b. Suivi du dosage par potentiométrie à courant nul
 c. Suivi du dosage par potentiométrie à courant non nul
 d. Titrage ampérométrique à ddp constante
5.2. Evolution des courbes I/E en complexométrie
 a. Potentiel standard d’un complexe
 b. Etude de cas
6. Electrodes et appareillages électrochimiques
6.1. Electrodes indicatrices
 a. Electrode à disque tournant
 b. Electrode à goutte de mercure
6.2. Electrodes de référence
6.3. Appareillages électrochimiques

UE7 Liaison chimique

Enseignant : G. SINI

Contenu

UE8 TP Chimie organique

Enseignant : E. CHELAIN

Contenu
Travaux pratiques : 3 séances de 7h + 1 séance contrôle terminal

1. Synthèse de l’isobornéol, précurseur du camphre
2. Synthèse et caractérisation du produit d’addition du bromure d’éthylmagnésium sur la chalcone
3. Synthèse de la coumarine
4. contrôle
UE8’ TP Chimie-physique

Enseignant : P.-H. AUBERT

Contenu

UE9 Chimie inorganique 2

Enseignant : P. BANET

Contenu

1. Les solides cristallisés
 1.1. Généralités
 1.1.1. Définitions
 1.1.2. Mailles de Bravais
 1.1.3. Systèmes cristallins et réseaux de Bravais
 1.1.4. Masse volumique et nombre d’entités par maille
 1.1.5. Indices et plans de Miller
 1.2. Structure des corps simples
 1.2.1. Les empilements compacts
 1.2.2. Les empilements non compacts
 1.3. Structure des corps composés
 1.3.1. Structure diamant
 1.3.2. NaCl
 1.3.3. CsCl
 1.3.4. CaF₂
 1.3.5. CaTiO₃
2. Les diagrammes binaires liquide-solide
 2.1. Diagrammes simples
 2.1.1. Miscibilité totale à l’état solide
 2.1.2. Miscibilité partielle à l’état solide
 2.1.3. Miscibilité nulle à l’état solide
 2.2. Établissement expérimental d’un diagramme
 2.3. Diagrammes lorsqu’un composé présente une variété allotropique
 2.3.1. Miscibilité totale de Aₐ et B
 2.3.2. Miscibilité partielle entre A et B
 2.3.3. Miscibilité nulle entre A et B
 2.4. Diagrammes avec des composés intermédiaires entre A et B
 2.4.1. Composé défini à fusion congruente
 2.4.2. Composé défini à fusion non congruente
 2.5. Cas fréquents et exemples
2.5.1. Composé défini se décomposant à l’état solide
2.5.2. Composé défini instable à basse température
2.5.3. Exemples

3. Propriétés optiques des complexes de métaux de transition
 3.1. Généralités
 3.2. Rappels sur la théorie du champ cristallin
 3.2.1. Symétrie octaédrique
 3.2.2. Symétrie tétraédrique
 3.2.3. Autres géométries
 3.2.4. Facteurs impactant 10 Dq
 3.2.5. Effet Jahn-Teller
 3.3. Propriétés optiques des complexes de métaux de transition
 3.3.1. Étude des complexes d1 et d9
 3.3.2. Les diagrammes d’Orgel
 3.3.3. Corrélation champ fort-champ faible, diagrammes de Tanabe-Sugano

UE9’ TP Chimie inorganique

Enseignant : P. GRIESMAR

Contenu

Travaux pratiques : 2 séances de 6h

1. Synthèse de complexes du vanadium - Analyse UV-visible de ces complexes
2. Étude de structures par diffraction des RX