AGM

Groupe de travail Dépendance

Organisateur : P. Doukhan

Groupe de travail dépendance

 

Institut Henri Poincaré

11 rue Pierre et Marie Curie

75231 Paris Cedex 05

http://www.ihp.fr/

 

 

Buts du GTD:

il s’agit de créer une dynamique autour des techniques liées à la dépendance de processus aléatoires. En effet au cours des dernières années, des méthodes nouvelles ont vu le jour. Il apparaît clairement que les participants de ce groupe de travail sont très représentatifs de ces techniques; une dynamique très forte de collaboration est attendue. On évoquera donc des modèles, leurs asymptotiques et on tentera de garder à l’esprit l’adéquation de ces modèles à des applications réelles. Certains exposés seront fondés sur des applications (en génomique, actuariat, géographie, agronomie, médecine, etc..) dans lesquelles ressort clairement la notion de dépendance en temps ou en espace. Des travaux transverses entre probabilités, statistiques et des disciplines appliquées sont l’objectif de ce groupe de travail dont la périodicité sera hebdomadaire ou bi-hebdomadaire selon les disponibilités de chacun

 

Paul Doukhan

Université de Cergy Pontoise

Membre du laboratoire AGM UMR8088 et du Labex MME-DII

 

 

A venir en..

         Année  2017

JANVIER 

Mardi 10, Salle 01 à 10h

Jean Marc Bardet (Paris 1, SAMM) TBA

 

Mardi 17, Salle 201 à 10h

Oleg Klesov (Kiev) Repeated records

 

Mardi 31, Salle 201 à 10h

C. Y. Robert (ISFA) Cluster size distributions of extreme values for the Poisson-Voronoi tessellation.

 

FEVRIER

Mardi 07, Salle 201 à 10h

J. Collamore (Copenhague) TBA

 

Mardi 14, Salle 201 à 10h

J. Gomez (Cergy Pontoise) TBA

 

 

                  Année  2016

DECEMBRE

 Mardi 6, Salle 201 à 10h

TBA

 

Mardi 13, Salle 01 à 10h

TBA

 

NOVEMBRE

Mardi 15, Salle 421 à 10h

Adam Jakubowski (Torun) TBA

 

Mardi 22, Salle 201 à 10h

Ivan Nourdin "Phase Singularities in complex arithmetic Random Waves"

résumé: "Complex arithmetic random waves are stationary Gaussian complex-valued solutions of the Helmholtz equation on the two-dimensional flat torus. We will use Wiener-Itô chaotic expansions in order to derive a complete characterization of the second order high-energy behaviour of the total number of phase singularities of these functions. Our main result will be that, while such random quantities verify a universal law of large numbers, they also exhibit non-universal and non-central second order fluctuations that are dictated by the arithmetic nature of the underlying spectral measures. The talk will be based on a joint work with Federico Dalmao, Giovanni Peccati and Maurizia Rossi. »

 

Mardi 29, Salle 201 à 10h

Aboubacar Amiri (Lille) "Regression estimation by local polynomial fitting for multivariate data streams"

Abstract: In this paper we study a local polynomial estimator of the regression function and its derivatives. We propose a sequential technique based on a multivariate counterpart of the stochastic approximation method for successive experiments for the local polynomial estimation problem. We present our results in a more general context by considering the weakly dependent sequence of stream data, for which we provide an asymptotic bias-variance decomposition of the considered estimator. Additionally, we study the asymptotic normality of the estimator and we provide algorithms for the practical use of the method in data streams framework.

 

OCTOBRE

Mardi 4, Salle 201 à 10h

TBA

 

 Mardi 18, salle 201 à 10h

Jean Michel Zakoian (ENSAE)

Conditional VaR estimation for dynamic portfolios driven by multivariate GARCH models

 Abstract

We study the estimation risk induced by univariate and multivariate methods for evaluating the conditional Value-at-Risk (VaR) of a portfolio

of assets. The composition of the portfolio can be time-varying and  the individual returns are assumed to follow a general multivariate

dynamic model. Under ellipticity of the conditional distribution, we introduce in the multivariate framework a concept of VaR parameter,

and we establish the asymptotic distribution of its estimator. A multivariate Filtered Historical Simulation method, which does not rely on ellipticity, is studied.

We also consider two univariate approaches based on past real or reconstituted returns. We derive asymptotic confidence intervals for the conditional VaR, which allow to quantify simultaneously the market and estimation risks. Potential usefulness, feasibility and drawbacks of the different univariate and multivariate approaches are illustrated via Monte-Carlo experiments and an empirical study based on stock returns.

 

Année 2016

SEPTEMBRE

 

Mardi 6, Salle 201 à 10h

Paul Doukhan (Cergy-Pontoise).

Projets, planification et organisation du GTD.

La première séance du GTD aura pour objet de mettre en place son organisation; je me permettrais aussi de lister quelques projets en cours pour ouvrir des discussions contradictoires,
- chaluts discrets,
- un nouveau point de vue sur la non stationnarité,
- sélection de modèle et identifiabilité,
- modélisation de tables de mortalité,
- estimation de la densité des innovations de modèles ARCH,
- modèles de séries temporelles de marginales Bernouilli.


Mardi 13, Salle 201 à 10h

Quentin Gilbert (ISFA Lyon) Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-Markov Multi-State Model

Multi-state models are generally used for pricing and reserving long-term care (LTC) insurance contracts. While most of the current researches assume that the model is Markovian, we show in this paper that this assumption should actually be rejected, as it leads to a bias in the estimation procedure that may be significant. Since the transition probabilities are complex to estimate with an inhomogeneous semi-Markov model based on transition intensities, we choose to apply recent methods for a direct estimation of transition probabilities, which perform better than the Aalen-Johansen estimator when the Markov assumption is not satisfied. Using the so-called pseudo-values related to Jackknife methods on these estimators, we incorporate the effects of covariates (duration, sex and generation) with a GLM regression model, similarly to Helms et al. [Helms, F., Czado, C. and Gschlößl, S. Calculation of Premiums LTC based on Direct Estimates of transition probabilities. Astin Bulletin, 2005, 455-469]. Another key interest of our approach is to include the diseases which cause the entry into dependency as it affects strongly the residual lifetime of LTC claimants. We apply it on a real French LTC insurance portfolio and analyze the effect of Markov hypothesis both on pricing and on the solvency capital requirement calculation.

 

Mardi 27, Salle 201 à 10h

I. Grublite (Cergy & Vilnius) TBA

 

 JUIN

 

Mardi 21, salle 05 à 10h

Yahia Sahli (ISFA, Lyon) LARCH-Type Approach for Modeling Mortality Improvements Surface

Abstract: In this paper we consider the projection of mortality surface at the national level. We consider modeling mortality improvements on a cohort basis taking into account correlations across generations. Therefore, we propose to model the whole mortality surface by considering a random field approach with a specific causal structure instead of a univariate modeling framework. Such an approach has the advantage to account for a local dependence among adjacent cohorts. 

 

 MAI

 

 Mardi 31, salle 421 à 10h

Mathieu Rosenbaum (Paris 6)  Nearly unstable Hawkes processes.

Abstract: Because of their tractability and their natural interpretations in term of market quantities, Hawkes processes are nowadays widely used in high frequency finance. However, in practice, the statistical estimation results seem to show that very often, only nearly unstable Hawkes processes are able to fit the data properly. By nearly unstable, we mean that the L1 norm of their kernel is close to unity. We study in this talk such processes for which the stability condition is almost violated, focusing in particular on limit theorems.

 

Mardi 24, salle 201 à 15h

Jacek Leśkow (Cracow University of Technology) A class of nonstationary, periodically or almost periodically correlated time series that are weakly dependent.

Abstract: The focus will be on applications in telecommunication and mechanical signal processing. In a relatively simple model we will show how to study the asymptotic properties of the estimators. We will also introduce the concept of resampling and investigate some aspects of consistency of selected resampling procedures. 

 

Mardi 3, salle 05 à 10h

Deny Pommeret (Marseille) Data driven smooth test of comparison for dependent

sequences 

Abstract: We present a smooth test of comparison for the marginal distributions of two dependent stationary sequences.

We describe the general test procedure. Several situations of dependence are then investigated. We also indicate various perspectives. (joint work with P. Doukhan and L. Reboul)

 

AVRIL

 

Mardi 26, salle 201 à 10h

Joseph Rynkiewicz (Paris 1) Asymptotic properties of autoregressive regime-switching models.

Abstract:  The statistical properties of the likelihood ratio test statistic (LRTS) for autoregressive regime-switching models are addressed. This question is particularly important for estimating the number of regimes in the model. Our purpose is to extend the existing results for Gaussian mixtures. We study the case of mixtures of autoregressive models (i.e. independent regime switches). In this framework, we give sufficient conditions to keep the LRTS tight and compute its asymptotic distribution.  Some numerical examples illustrate the results and their convergence properties.

 

 

Contacts

UFR S&T
AGM / Dpt mathématiques
2 av. Adolphe Chauvin
95302 CERGY-PONTOISE CEDEX

(Bat. E, 5ème étage)

Laboratoire AGM: Linda ISONE (linda.isone @ u-cergy.fr)

Département d'enseignement (étudiants) : Caroline VALADON (caroline.valadon @ u-cergy.fr)

Conférences : Jennifer DENIS (jennifer.denis @ u-cergy.fr)